organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(1-methyl-1-phenylethyl) peroxide

Wei-Yi Su, Guang-Yang Hou, Qiu-Xiang Yin* and Li-Na Zhou

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: suweiyi222@yahoo.com.cn

Received 23 September 2008; accepted 14 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.110; data-to-parameter ratio = 15.9.

In the crystal structure, the title compound (also called dicumyl peroxide), C₁₈H₂₂O₂, lies on a center of symmetry. The COOC plane including the dioxy group makes a dihedral angle of $79.10(5)^{\circ}$ with the phenyl ring. An intermolecular $C-H \cdots \pi$ interaction is observed between the phenyl groups.

Related literature

For general background, see: Ferrero (2006); Konar et al. (1993); Ramar & Alagar (2004); Wang et al. (1998).

Experimental

Crystal data

C18H22O2 $M_{\rm r} = 270.36$ Orthorhombic, Pbca a = 10.040 (2) Å b = 7.4774 (15) Å c = 21.016 (4) Å

V = 1577.7 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 293 (2) K $0.25 \times 0.20 \times 0.15 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.982, \ T_{\rm max} = 0.989$

11957 measured reflections 1464 independent reflections 1232 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.077$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	92 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
1464 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the phenyl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3A\cdots Cg^{i}$	0.93	2.93	3.7874 (17)	154
	1	. 3		

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the SRCICT of Tianjin University and the material DCP afforded by Gaogiao Petrochemical Corporation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2340).

References

- Ferrero, F. (2006). J. Therm. Anal. Calorim. 83, 373-378.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Konar, J., Sen, A. K. & Bhowmick, A. K. (1993). J. Appl. Polym. Sci. 48, 1579-1585
- Ramar, P. & Alagar, M. (2004). Polym. Adv. Technol. 15, 377-381.
- Rigaku/MSC (2004). RAPID-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands Texas USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, Z., Chan, C.-M., Zhu, S.-H. & Shen, J.-R. (1998). Polymer, 39, 6801-6806.

supplementary materials

Acta Cryst. (2008). E64, o2128 [doi:10.1107/S1600536808033412]

Bis(1-methyl-1-phenylethyl) peroxide

W.-Y. Su, G.-Y. Hou, Q.-X. Yin and L.-N. Zhou

Comment

The title compound, (I), a simple organic peroxide, has gradually become almost the most important additive in operations affected by molecular transport, such as grafting (Konar *et al.*, 1993; Ramar & Alagar, 2004) and cross-linking (Wang *et al.*, 1998; Ferrero, 2006), which are based on the formation of oxyradicals due to the thermal decomposition of the peroxides. It's widely used in the art as vulcanizing agents for resins and elastomers, as cross-linking agents for polyolefins.

The centrosymmetric molecular structure of (I) is shown in Fig. 1. In the molecule, two phenyl rings are, of course, parallel to each other due to the symmetry element. The peroxy unit has an O—O bond length of 1.6853 (16) Å, and the four atoms, C7, O1, O1A and C7A are coplanar with a C7—O1—O1A bond angle of 106.02 (9)°. There is no hydrogen bond in the packing structure, and cohesion of the crystal can be attributed to van der Waals interactions.

Experimental

At room temperature, the title compound (1 g) provided by Gaoqiao petrochemical corporation was dissolved in 20 mL ethanol (99.7%). The solvent was vaporized slowly by use of a film covering the container (beaker). Then the solution was placed in darkness until crystals appeared. The product was taken out from the solvent by tweezers, and dried in the air at room temperature.

Refinement

H atoms are placed in calculated positions and constrained to ride on their parent atoms, with C–H = 0.93–0.96 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The packing diagram of (I), viewed down the b axis. H atoms have been omitted.

Bis(1-methyl-1-phenylethyl) peroxide

Crystal data

 $C_{18}H_{22}O_2$ $M_r = 270.36$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 10.040 (2) Å b = 7.4774 (15) Å c = 21.016 (4) Å V = 1577.7 (5) Å³ Z = 4 $F_{000} = 584$

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer	1232 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.077$
oscillation scans	$\theta_{\text{max}} = 25.5^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$\theta_{\min} = 3.5^{\circ}$
$T_{\min} = 0.982, T_{\max} = 0.989$	$h = -12 \rightarrow 10$
11957 measured reflections	$k = -9 \rightarrow 9$
1464 independent reflections	<i>l</i> = −25→25

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.043$	$w = 1/[\sigma^2(F_o^2) + (0.0556P)^2 + 0.2734P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.110$	$(\Delta/\sigma)_{\rm max} = 0.010$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
1464 reflections	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$
92 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.027 (7)

 $D_{\rm x} = 1.138 {\rm Mg m}^{-3}$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.5 - 27.6^{\circ}$

 $\mu = 0.07 \text{ mm}^{-1}$ T = 293 (2) K

Plate, colorless

 $0.25 \times 0.20 \times 0.15 \text{ mm}$

Melting point: 315.15 K Mo *K*α radiation

Cell parameters from 8972 reflections

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
01	0.46269 (8)	0.07789 (11)	0.51277 (4)	0.0309 (3)
C1	0.44577 (13)	-0.10967 (18)	0.62787 (6)	0.0373 (4)
H1A	0.3746	-0.1115	0.5996	0.045*
C2	0.44768 (16)	-0.2285 (2)	0.67854 (6)	0.0462 (4)
H2A	0.3785	-0.3099	0.6836	0.055*
C3	0.55144 (16)	-0.2265 (2)	0.72135 (6)	0.0482 (4)
H3A	0.5527	-0.3060	0.7554	0.058*
C4	0.65322 (16)	-0.1055 (2)	0.71319 (6)	0.0453 (4)
H4A	0.7231	-0.1025	0.7422	0.054*
C5	0.65252 (13)	0.01215 (17)	0.66204 (6)	0.0353 (3)
H5A	0.7227	0.0920	0.6568	0.042*
C6	0.54838 (12)	0.01186 (16)	0.61873 (5)	0.0285 (3)
C7	0.54171 (12)	0.14706 (16)	0.56434 (6)	0.0302 (3)
C8	0.67730 (14)	0.20577 (19)	0.54013 (6)	0.0419 (4)
H8A	0.7274	0.1027	0.5271	0.063*
H8B	0.7242	0.2670	0.5734	0.063*
H8C	0.6660	0.2847	0.5045	0.063*
C9	0.45933 (16)	0.30860 (19)	0.58538 (6)	0.0457 (4)
H9A	0.3740	0.2689	0.6004	0.068*
H9B	0.4472	0.3880	0.5500	0.068*
Н9С	0.5051	0.3703	0.6190	0.068*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	Atomic	displacement	parameters	$(Å^2)$)
--	--------	--------------	------------	---------	---

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0353 (5)	0.0293 (5)	0.0282 (5)	0.0064 (4)	-0.0042 (4)	-0.0065 (3)
C1	0.0372 (7)	0.0434 (8)	0.0312 (7)	-0.0045 (6)	0.0036 (6)	0.0002 (6)
C2	0.0558 (9)	0.0452 (9)	0.0377 (8)	-0.0046 (7)	0.0142 (7)	0.0028 (6)
C3	0.0711 (11)	0.0426 (9)	0.0309 (7)	0.0163 (7)	0.0120 (7)	0.0058 (6)
C4	0.0556 (9)	0.0506 (9)	0.0297 (7)	0.0182 (7)	-0.0080 (7)	-0.0051 (6)
C5	0.0383 (7)	0.0358 (7)	0.0319 (7)	0.0045 (6)	-0.0042 (6)	-0.0074 (5)
C6	0.0330 (7)	0.0288 (7)	0.0235 (6)	0.0042 (5)	0.0017 (5)	-0.0057 (5)

supplementary materials

C7 C8	0.0377 (7) 0.0495 (8)	0.0271 (6) 0.0387 (8)	0.0258 (6) 0.0376 (7)	-0.0014 (5) -0.0153 (6)	-0.0039 (5) -0.0015 (7)	-0.0034 (5) 0.0017 (6)
C9	0.0654 (10)	0.0339 (8)	0.0377 (8)	0.0124 (7)	-0.0072 (7)	-0.0068 (6)
Geometric param	neters (Å, °)					
O1—C7		1.4392 (15)	С5—С	26	1.3	862 (17)
01—01 ⁱ		1.4853 (16)	С5—Н	15A	0.9	300
C1—C6		1.3871 (18)	С6—С	27	1.5	273 (17)
C1—C2		1.387 (2)	С7—С	28	1.5	181 (18)
C1—H1A		0.9300	С7—С	29	1.5	292 (18)
C2—C3		1.377 (2)	С8—Н	18A	0.9	600
C2—H2A		0.9300	С8—Н	I8B	0.9	600
C3—C4		1.375 (2)	С8—Н	18C	0.9	600
С3—НЗА		0.9300	С9—Н	19A	0.9	600
C4—C5		1.3893 (19)	С9—Н	I9B	0.9	600
C4—H4A		0.9300	С9—Н	19C	0.9	600
C7—O1—O1 ⁱ		106.02 (9)	01—0	С7—С8	110	0.23 (10)
C6—C1—C2		121.05 (13)	01—0	С7—С6	110	0.47 (10)
C6—C1—H1A		119.5	C8—C	С7—С6	113	3.76 (10)
C2—C1—H1A		119.5	01—0	С7—С9	10	1.74 (10)
C3—C2—C1		120.35 (14)	C8—C	С7—С9	110	0.70 (11)
С3—С2—Н2А		119.8	С6—С	С7—С9	10	9.28 (10)
C1—C2—H2A		119.8	С7—С	C8—H8A	10	9.5
C4—C3—C2		119.21 (14)	С7—С	C8—H8B	10	9.5
С4—С3—НЗА		120.4	H8A—	-C8—H8B	10	9.5
С2—С3—НЗА		120.4	С7—С	C8—H8C	10	9.5
C3—C4—C5		120.61 (13)	H8A—	-C8—H8C	10	9.5
C3—C4—H4A		119.7	H8B—	-C8—H8C	10	9.5
C5—C4—H4A		119.7	С7—С	29—Н9А	10	9.5
C6—C5—C4		120.72 (13)	С7—С	29—Н9В	10	9.5
С6—С5—Н5А		119.6	H9A—	-С9—Н9В	10	9.5
C4—C5—H5A		119.6	C7—C	.9—H9C	10	9.5
C5—C6—C1		118.05 (12)	H9A—	-C9—H9C	10	9.5
C5—C6—C7		121.56 (11)	H9B—	-С9—Н9С	109	9.5
C1—C6—C7		120.31 (11)				
C6—C1—C2—C3	3	0.7 (2)	01 ⁱ —0	D1—C7—C6	-6	5.93 (12)
C1—C2—C3—C4	4	-0.1 (2)	01 ⁱ —0	D1—C7—C9	173	8.12 (10)
C2—C3—C4—C3	5	-0.7 (2)	С5—С	C6—C7—O1	15:	5.72 (11)
C3—C4—C5—C6	6	0.95 (19)	C1—C	C6—C7—O1	-2	7.54 (15)
C4—C5—C6—C	1	-0.32 (18)	С5—С	С6—С7—С8	31.	.13 (16)
C4—C5—C6—C	7	176.48 (11)	C1—C	С6—С7—С8	-1	52.13 (12)
C2-C1-C6-C	5	-0.51 (19)	С5—С	С6—С7—С9	-9	3.14 (14)
C2—C1—C6—C	7	-177.36 (12)	C1—C	С6—С7—С9	83.	.59 (14)
01 ⁱ —01—C7—C	8	60.64 (13)				

Symmetry codes: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C3—H3A····Cg ⁱⁱ	0.93	2.93	3.7874 (17)	154
Symmetry codes: (ii) $-x+1$, $y-1/2$, $-z+3/2$.				

Fig. 1

